All functions

CLRnorm()

Center log ratio normalisation

CVTune_ncomp()

Tune ncomp using cross-validation.

CVTune_nfeat()

Tune nfeat using cross-validation.

KeepCommonGenes()

Keep common genes of two SingleCellExperiment objects.

PhiSpace()

PhiSpace continuous phenotyping

PhiSpaceR_1ref()

PhiSpace using a single reference

RTassay()

Apply rank transform to a gene by cell matrix.

RankTransf()

Rank transform of a SingleCellExperiment object.

SuperPC()

Compute regression model using selected features.

VizSpatial()

Visualising features (eg gene expression), metadata (eg cell type) or reducedDim component (eg PhiSpace cell type score) in 2D tissue space.

align_clusters()

Align clustering results.

as.sparse.matrix()

Convert a matrix to sparse metrix.

basicPlotFormat()

Plot formatting for presentation and publication

cellTypeCorMat()

Create cell type correlation matrices

classErr()

Calculate classification errors.

codeY()

Convert discrete annotations to dummy variable matrices.

codeY_vec()

Convert discrete annotations to dummy variable matrices.

computeUMAP()

Compute UMAP.

doubleCent()

Double center a matrix by column and row means, resulting in a new matrix with zero row and column means.

getClass()

Dicretise soft annotation to labels.

getErr()

Compute different errors for cross-validation.

getErr_nfeat()

Calculate errors for the cross-validation for selecting nfeat.

getPC()

Principal component analysis (PCA) based on partial singular value decomposition (SVD).

loadBarplot()

Plot loadings of dimension reduction as bar plot.

logTransf()

Relative counts normalisation.

matrixPlot()

Score matrix plot

mvr()

Multivariate regression via principal component analysis (PCA) or partial least squares (PLS).

normPhiScores()

Normalise PhiSpace phenotypic scores by row or by column.

phenotype()

Soft phenotyping of query assay.

plotPhiSpaceHeatMap()

Plot PhiSpace scores as a heatmap

plotSankey()

Plot Sankey diagram for two classification results.

plotSankey3()

Plot Sankey diagram for three hard classification results.

pseudoBulk()

Converting single cells to pseudo-bulks.

reNameCols()

Turn a matrix to a data.frame withe newly defined colnames.

scranTransf()

Run scran normalisation

selectFeat()

Select nfeat top features from each column (label) of impScores

split2()

Create partitions of data for cross-validation.

subsample()

Subsample from a sce object

translateLabel()

Translate cell type labels from finer to coarser according to a dictionary.

tunePhiSpace()

Title

zeroFeatQC()

Minimal quality control (QC): remove features with all zero values.